
Enhanced magnetic reconnection in the presence of pressure gradients
M. J. Pueschel, P. W. Terry, D. Told, and F. Jenko 
 
Citation: Physics of Plasmas (1994-present) 22, 062105 (2015); doi: 10.1063/1.4922064 
View online: http://dx.doi.org/10.1063/1.4922064 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/22/6?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Electron heating during magnetic reconnection: A simulation scaling study 
Phys. Plasmas 21, 122902 (2014); 10.1063/1.4904203 
 
Asymmetric evolution of magnetic reconnection in collisionless accretion disk 
Phys. Plasmas 21, 052903 (2014); 10.1063/1.4875739 
 
Magnetic reconnection in the presence of externally driven and self-generated turbulence 
Phys. Plasmas 20, 112102 (2013); 10.1063/1.4828395 
 
A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for
magnetic reconnection 
Phys. Plasmas 20, 061201 (2013); 10.1063/1.4811092 
 
Electromagnetic ion-temperature-gradient modes and anomalous transport in a nonuniform magnetized plasma
with equilibrium flows 
Phys. Plasmas 7, 1125 (2000); 10.1063/1.873920 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.104.165.60 On: Wed, 03 Jun 2015 16:10:07

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1400665199/x01/AIP-PT/Pfeiffer_PoP_ArticleDL_060315/15.02.25_3_Prod_1640x440_EN.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=M.+J.+Pueschel&option1=author
http://scitation.aip.org/search?value1=P.+W.+Terry&option1=author
http://scitation.aip.org/search?value1=D.+Told&option1=author
http://scitation.aip.org/search?value1=F.+Jenko&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4922064
http://scitation.aip.org/content/aip/journal/pop/22/6?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/21/12/10.1063/1.4904203?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/21/5/10.1063/1.4875739?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/11/10.1063/1.4828395?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/6/10.1063/1.4811092?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/6/10.1063/1.4811092?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/7/4/10.1063/1.873920?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/7/4/10.1063/1.873920?ver=pdfcov


Enhanced magnetic reconnection in the presence of pressure gradients

M. J. Pueschel,1 P. W. Terry,1 D. Told,2,3 and F. Jenko2,3

1Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2Max-Planck-Institut f€ur Plasmaphysik, D-85748 Garching, Germany
3Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

(Received 13 February 2015; accepted 19 May 2015; published online 3 June 2015)

Magnetic reconnection in the presence of background pressure gradients is studied, with special

attention to parallel (compressional) magnetic fluctuations. A process is reported that reconnects

fields through coupling of drift-wave-type instabilities with current sheets. Its time scale is set not

by the reconnecting field but by inhomogeneities of the background density or temperature. The

observed features can be attributed to a pressure-gradient-driven linear instability which interacts

with the reconnecting system but is fundamentally different from microtearing. In particular, this

mode relies on parallel magnetic fluctuations and the associated drift. For turbulent reconnection,

similar or even stronger enhancements are reported. In the solar corona, this yields a critical

pressure gradient scale length of about 200 km below which this new process becomes dominant

over the tearing instability. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922064]

I. INTRODUCTION

In the space plasma community, magnetic reconnection

driven by current gradients, i.e., tearing modes, is an area

receiving significant attention.1–6 Meanwhile fusion

researchers have long investigated tearing mode physics

(see, e.g., Ref. 7), and recently important strides have been

made in advancing our knowledge of microtearing (MT)

modes,8–10 which drive reconnection by background electron

temperature gradients.

Some studies have focused on the impact of density and

temperature gradients on collisionless tearing (CT)

modes,11–14 where in the standard picture, such gradients

create stabilizing diamagnetic flows which reduce the growth

rate c relative to its gradient-free value c0 (note that the elec-

tron temperature gradient may also have an impact, see Ref.

15). For strong guide fields and neglecting parallel magnetic

fluctuations Bk, this approach (see, e.g., Refs. 12 and 16)

predicts

c2 � c2
0 �

k2
yx

2
n

4
1þ Ti0

Te0

� �2

; (1)

where ky is the instability wave number normalized to the

inverse ion sound gyroradius qs¼ cs/Xi, with the ion sound

speed cs ¼ ðTe0=miÞ1=2
and the ion gyrofrequency Xi; while

Tj0 and mj are the temperature and mass, respectively, with

the ion and electron species indicated by the indices. The

density gradient along the x direction is xn¼Lref/Ln, utiliz-

ing the definitions Lref for the reference (macroscopic)

normalization length and Ln¼ –n0/(rxn0) for the density gra-

dient scale length; n0 is the background density, identical for

ions and electrons due to quasineutrality. In the usual local

flux tube approximation, both rxn0 and n0 are assumed to be

constant throughout the simulation domain. Growth rates are

normalized to cs/Lref unless indicated otherwise.

Other work on tearing modes often uses the electron

diamagnetic drift frequency x*e for normalization. It is

straightforward to convert to that standard: in terms of the

normalized density gradient xn, one has x*e¼xnkycs/Lref,

where ky is again normalized to q�1
s . Thus, this form com-

bines the driving density gradient with the standard normal-

ization of frequencies for this paper.

A recent study of two-dimensional reconnection in

strong guide fields5 has shown that in certain parameter

regimes, Eq. (1) is no longer valid, but rather found that—

under the right conditions—background gradients may

enhance rather than stabilize CT modes. In that publication,

the occurrence of faster modes (relative to CT) in the pres-

ence of background gradients is mentioned, along with an

attribution of the effect to gradient-driven instabilities.

This paper follows up on those initial findings and

describes in detail the process by which background pressure

gradients can enhance reconnecting field growth. It is struc-

tured as follows. After a few words on the gyrokinetic turbu-

lence code Gene, which is used throughout this paper, it is

demonstrated that Eq. (1) accurately predicts the gradient-

modified growth rate in the appropriate limits and in the

absence of Bk fluctuations. While similar comparisons have

been made in the past, demonstrating agreement here serves

the purpose of highlighting the impact of Bk in the later parts

of this paper. A brief excursion is made in Sec. III, where a

new, pressure-gradient-driven instability is presented, which

relies fundamentally on Bk. It is then shown in Sec. IV how

reconnection rates may be enhanced by rBk drifts in high-b
cases, counteracting diamagnetic drifts, as well as coupling

to pressure-gradient-driven instabilities. For the solar corona,

the latter process is predicted to become important below a

critical gradient length scale, as demonstrated in Sec. V. A

summary of the results of this paper can be found in Sec. VI.

II. CODE-THEORY COMPARISON

As described in detail in Ref. 5 for reconnection physics,

the Gene code17,18 solves the gyrokinetic Vlasov-Maxwell

system for arbitrary species, here, ions and electrons, with
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derivatives along the parallel coordinate treated as @/@z! 0

for the present case. It is assumed that the reconnecting mag-

netic field Bx,y � B0, relative to the uniform background

field B0 along z. Note that in the presence of xn 6¼ 0, force

balance technically requires @B0/@z 6¼ 0; this effect, however,

is neglected here, a common choice in local flux tubes. The

perpendicular directions x and y are normalized to qs,

whereas z is normalized to Lref� qs. The gyrokinetic frame-

work19 orders out the gyrofrequency time scale, thus remov-

ing fast magnetosonic waves (but retaining parallel magnetic

fluctuations Bk). One may initialize the perturbed part of the

distribution function such that it produces a magnetic field

By0¼By(t¼ 0) at a constant kx¼ kcs. This drives linear

growth of Bx, derived from the magnetic vector potential Ak,
with Bx � By throughout the linear phase of the instability.

Note that all fluctuating magnetic field quantities are normal-

ized to B0qs/Lref.

The CT mode grows in the range of wave numbers ky

between 0 and kcs—corresponding to D0 values of þ1 and

0, respectively, see Ref. 1—with the maximum c occurring

roughly in the center of this ky region. As detailed, e.g., in

Refs. 1 and 5, one may write the conditions where analytical

theory16 correctly describes the linear physics of the CT

mode as

b 1þ Ti0

Te0

� �
� 2

me

mi

isothermal electrons; (2)

b 1þ Ti0

Te0

� �
� 2

me

mi

� �1=4

no electron FLR; no polarization drift: (3)

Here, FLR stands for finite Larmor radius effects, and b
represents the ratio of the electron kinetic pressure to the

magnetic pressure.

To comply with both conditions, the following parameter

set is chosen for code-theory comparisons: Ti0/Te0¼ 0.01,

hydrogen mass ratio, b¼ 0.02, and kcs¼ 0.2. In Fig. 1,

growth rates are shown for the ky¼ 0.01 tearing mode, as a

function of increasing density gradient xn. Equation (1) is

seen to agree rather well with the simulation data; notably,

the simulated growth rate at xn¼ 0 was taken for c0 to avoid

sensitivity to small errors relative to the analytical small-ky

limit. While at small values of b, the impact of Bk tends to be

very weak, it is to be stressed that these simulations were

obtained while artificially setting Bk¼ 0.

The growth rates shown in Fig. 1 are normalized to the

inverse Alfv�en time

cA ¼
kcsBy0;max

n0mi

2

b

� �1=2

; (4)

see Refs. 1 and 5. In standard Gene units, growth rates are

normalized to cs/Lref and depend on the strength of the recon-

necting field By0,max. This standard normalization is used in

Sec. III, where a slab drift wave is investigated that requires

no current gradient for instability.

III. THE GRADIENT-DRIVEN DRIFT-COUPLING
INSTABILITY

In order to illuminate the enhancement of CT growth by

pressure gradients for the case studied in the present paper, it

is first necessary to examine a new instability. Consider a

simple, unsheared slab geometry with a density gradient xn

or temperature gradient xT (of any species) across the x
direction—here, without loss of generality, the case of only a

finite xn is highlighted. The following assumptions and sim-

plifications are made:

• no parallel variation: @/@z! 0,
• no radial variation: kx¼ 0) k?¼ ky,
• no perpendicular magnetic fluctuations: Ak¼ 0,
• Maxwellian velocity space for the perturbed distributions.

More specifically, the driftkinetic limit as applied here refers

to a replacement of the Bessel functions and derived quantities

in the gyrokinetic equations with first-order small-argument

expansions. It should be noted that while Ak is neglected, the

coupled U-Bk system is treated self-consistently through the

Poisson equation and Ampère’s law.

In Appendix A, the Vlasov equation and coupled U-Bk
field equations for this case are used to derive a dispersion

relation that takes the form of a quadratic equation, see Eq.

(A25). Further assuming low b and small ky lets one compare

the relative magnitude of competing terms, significantly sim-

plifying the dispersion relation and reducing the solution to

Eq. (A31). It is further shown that, consistently using Gene

conventions for normalization and frequency sign, this equa-

tion yields a growth rate and frequency that agrees very well

with the corresponding output from a Maple worksheet

evaluating the full dispersion relation, the simulation output

from Gene, and the simulation output from the gyrokinetic

code AstroGK.20 In a last step, parameter dependencies are

extracted, yielding for growth rate and frequency, respectively,

c / xnb
1=2 and x / xnky: (5)

It is possible to provide a more intuitive picture of the

physical mechanisms governing this instability. In Fig. 2, an

FIG. 1. Comparison of simulation data with the relative stabilization pre-

dicted by Eq. (1) for finite density gradients xn�Lref/Ln. In this figure,

growth rates are normalized to the inverse Alfv�en time cA. Good agreement

is seen for these physical input parameters, which lie well in the regime of

validity of the underlying theory. Simulations were run with Bk deactivated.
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electrostatic potential perturbation is shown in green in the

form of alternating positive and negative charges in the y
direction. This U causes an E�B drift which advects mate-

rial from regions of higher and lower background density (or

temperature, in cases where a temperature gradient is pres-

ent), shown here in blue. The resulting density perturbation,

via pressure balance, leads to a perturbation in Bk / p? / nT
(red circles), where p? denotes the perturbed perpendicular

pressure, at a phase angle of 90� relative to the original U
perturbation. Such a Bk, however, necessarily causes a rBk
drift, which, due to its charge-separating property, produces

electrostatic perturbations. As this drift is phase-aligned with

the original U, reinforcement occurs, and an instability has

arisen (a second solution to the equations corresponds to

anti-alignment and results in a damped mode). Based on the

above properties, this instability is hereafter referred to as

the gradient-driven drift-coupling (GDC) mode. Both drift

reinforcement mechanisms arise from the U-Bk cross terms

in Eqs. (A21) and (A22).

The GDC can be considered a drift-wave-type instabil-

ity. This is confirmed by the cross phases between the elec-

trostatic potential U and density or temperatures (depending

on the driving gradient), which obey the expected relations,

e.g.: U� n has aþp/2 phase, U�Tj has –p/2 for xn drive.

This mode fundamentally requires both Bk fluctuations and

background density or temperature gradients in order to

grow; if Ak is allowed to evolve self-consistently, one tends

to observe AknU 	 Bk. If Bk (or U) is suppressed in a sim-

ulation, no GDC growth is detected.

Different interpretations exist of what constitutes a drift

wave. Here, no parallel electron response exists to connect

density and U perturbations. Consequently, certain strict def-

initions of the term “drift wave” may not apply. However,

the instability relies fundamentally on plasma drifts and

also exhibits, in general, diamagnetic drifting—for most pur-

poses, the drift wave label is therefore appropriate.

It is interesting to observe that the calculations in

Appendix A also imply that the GDC is neither simply ion-

or electron-type—both CT and MT are electron instabilities.

Also note that modes such as MT generally require finite Ak
to reconnect fields.

Not surprisingly, the GDC grows primarily at kx¼ 0, as

it draws on the free energy contained in the background gra-

dient(s) along x. Slower growth at finite kx is also observed,

but is found to be negligible when kx � ky. This can be

understood by relaxing the kx¼ 0 assumption in the

Appendix and retaining the full k?. In the z direction, the

mode relies on the kz¼ 0 component: if the simulation is re-

stricted to finite values of kz, no growth is observed. This is

simply a consequence of the fact that in the absence of any

contribution at kz¼ 0, the mode averages out to zero along z.

As illustrated in Fig. 3, the parametric dependencies pre-

dicted by the solution of the dispersion relation are found to

hold: as b approaches unity (albeit only indirectly as a conse-

quence of higher b), very little variation of c(ky) can be seen

for ky � 1. At higher ky values, FLR stabilization sets in—

note that even in the first-order driftkinetic limit, some FLR

effects are retained, and the mode eventually becomes stable

at large ky (larger than when using the full gyrokinetic

approach).

Figure 4 shows the influence of b on the peak of the

growth rate and on frequency scaling. Above b	 1, a new

regime appears where the frequency changes sign from ion

to electron type (ax indicates the ky scaling exponent of the

frequency x), just as the low-b scaling of c / b1=2 breaks

down. A similar observation can be made as Ti0 is decreased

relative to Te0 (not shown), with c falling in the process.

While the derivation in Appendix A is based on the

assumption that only a density gradient xn drives the mode,

the calculation and results for finite temperature gradients

xTj are almost identical. This is illustrated in Fig. 5: taking

into account that the density gradient has to be applied to

both ions and electrons, leading to doubled growth, the dif-

ferent gradients have essentially the same impact on c. The

linear dependence is in agreement with the theoretical pre-

dictions. For mixed-gradient drive, one should expect a

FIG. 2. Cartoon picture of the GDC instability. Electrostatic perturbations

(green charges) create drifts (green triangles), which reinforce parallel mag-

netic perturbations (red circles) and thus their associated drifts (red trian-

gles). The reinforcing mechanism relies on a gradient of the background

density (blue) or temperature. See the text for more details.

FIG. 3. GDC growth rate spectra for different values of b: at low pressure,

the mode experiences increasing stabilization, in particular, at higher ky. All

results shown here use xn¼ 1 and mi¼mH, and are normalized to cs/Ln¼ cs/

Lref. The corresponding normalized diamagnetic drift frequencies therefore

evaluate to x*e¼ ky.
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scaling c	 2xnþxTiþxTe. Not shown are the real frequen-

cies—they also scale linearly with the gradients, with [c/

x](xn)� 14, [c/x](xTi)� 2.1, and [c/x](xTe)��3.3. The

sign change is to be expected for xTe drive, as it signifies a

transition from ion-type to electron-type mode.

As the reaction of the GDC to finite collisionality may

influence its relevance to certain practical applications, its

impact on the growth rate is studied next. Using the same pa-

rameters as below in Sec. IV, along with an electron-ion col-

lisionality �¼ 0.1 cs/Lref—comparable in magnitude to c for

these parameters—one finds only a minimal growth rate

enhancement of 	1%. In effect, the GDC growth rate is thus

concluded to be essentially independent of �. For more

details on the Boltzmann collision operator and definition of

the collisionality, see Ref. 5.

Studying more complex scenarios for the GDC has to be

deferred to future work. However, it should be mentioned

that the GDC is stabilized by the introduction of a sufficient

amount of background magnetic shear; it is therefore more

likely to be prevalent in low-shear configurations of mag-

netic confinement fusion experiments. Despite that property,

a possible relation may exist with the compressional electron

drift wave mentioned in Ref. 21. There, an instability is iden-

tified which relies on pressure gradients and high b, and

which exists only when taking Bk fluctuations into account.

In general, the GDC as well as its coupling to tearing

modes—as detailed in Sec. IV—could be active in magnetic

confinement experiments. The impact of either, relative to

other microinstabilities such as MT, would depend on the

specific physical parameter regime.

In the unsheared slab, the GDC does not exhibit a criti-

cal gradient, and it is unstable—with non-negligible growth

rates—even as ky ! 0 (but not at exactly ky¼ 0; there, the

drive term in the Vlasov equation becomes exactly zero, and

no mode growth is observed). While these features make it

an interesting candidate for various low-gradient astro- and

space-physical applications, they also mean that nonlinear

simulations of GDC turbulence are problematic. More spe-

cifically, since it is impossible to extend the simulation box

in y to the point where the lowest finite ky in the system is

linearly stable, and since that very ky mode necessarily is the

most unstable mode, turbulence levels scale with the box

size, and numerical convergence in that direction is impossi-

ble. Unless additional degrees of complexity (such as mag-

netic curvature or a form of low-ky damping term) are

introduced, simulations can only be considered converged if

the full system size is covered in y. That, however, may be

inconvenient due to the periodic boundary conditions. In

nonlinear tests of pure GDC turbulence (i.e., without current

sheet drive), the simulations were not well-behaved. Cases

with mixed GDC-CT drive tend to be somewhat more man-

ageable, as shall be demonstrated later in this paper.

The findings of this Section shall be applied to a recon-

necting system in the Section below, where the direct and

indirect impact of Bk fluctuations on reconnection is studied.

IV. ENHANCED RECONNECTION RATES

As described in Ref. 5, finite xn or xT in conjunction

with self-consistent evolution of Bk leads to destabilization

of reconnecting field growth, generally with only moderate

effects observed at higher ky and more severe changes at

lower ky. Before the focus is turned to the role of the GDC

and similar instabilities in enhancing reconnection rates

especially at these lower ky, the direct effect of Bk on the

tearing mode shall be elucidated, which is responsible for the

more moderate modifications of growth rates seen primarily

at higher ky in the example mentioned above.

A. Counteracting-drift destabilization

It is of significance that the standard parameter set in

Ref. 5—which shall also be used in the present Section—

espouses a large b value of 0.3, as it affects the relative

magnitudes of drifts. The other physical parameters are

FIG. 4. b dependence of GDC growth (solid black line), with a different re-

gime appearing at larger values of b � 0.1. This is also reflected by the chang-

ing scaling of the mode frequency x / kjax j
y (dashed red line). Negative signs

of ax correspond to frequencies in the electron direction. All results shown

here use xn¼ 1 and mi¼mH, and are normalized to cs/Ln¼ cs/Lref.

FIG. 5. Scalings of GDC growth rate with different driving gradients: xn

(black diamonds), xTi (red triangles), and xTe (blue squares)—for each

curve, all other respective gradients are set to zero. Note that xn�xni�xne

due to quasineutrality, leading to a xn curve that is approximately twice as

steep as the xTj curves. All results shown here use ky¼ 0.02 and mi¼mH, as

well as Ti0¼Te0.
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Ti0 ¼ Te0; me ¼ 0:04mi; kcs ¼ 0:2, and zero collisionality

and dissipation. Apart from the temperature ratio, this

parameter set is identical with Case II as described in Ref. 1.

For sufficiently low values of xn, even relatively low ky

tend to exhibit no unexpected behavior, i.e.: no rapid growth.

At ky¼ 0.02, the following observations can be made. If Bk
is switched off, increasing xn from 0 to 0.1 leads to a reduc-
tion of the linear growth rate by 0.2%—note that the growth

rates were extracted with very high precision for this

analysis. This is consistent with diamagnetic drift stabiliza-

tion, although at these parameters, Eq. (1) can no longer be

expected to yield precise quantitative predictions.

Conversely, when Bk is included, increasing xn from 0 to

0.1 causes a 1% increase of c. This opposite behavior can be

explained through the newly activated term in the Vlasov

equation: the rBk drift requires both Bk and a non-zero pres-

sure gradient. Especially in cases of high b, it gains strength

relative to the E�B drift and may counteract diamagnetic

flow stabilization.

B. Gradient-enhanced tearing

The potentially more severe consequence of adding

pressure gradients arises from coupling of the CT-driving

current sheet to other instabilities, as shall be demonstrated

below. While the present work is focused on coupling specif-

ically with GDC, one could envision, in principle, other

drift-wave-type instabilities taking its place.

A clarifying comment shall be made before presenting

any results, however. The terms tearing and reconnection
are used for a variety of physical effects and scenarios, with

different meanings found in different publications. In the

present work, both refer—interchangeably—to growth in the

reconnecting field Bx and the resulting rearrangement of

magnetic topology around X and O points. Thus, tearing
includes but is clearly not limited to the tearing mode (CT in

the present nomenclature), and tearing allows no inferences

about the free energy source of reconnection.

Figure 6 shows the CT growth rate in black, both for

xn¼ 0 and xn¼ 0.5, with the latter extrapolated to illustrate

the subdominant regime at low ky. For the extrapolation, sim-

ulations with lower xn are used, and the moderate enhance-

ment of c (as opposed to the rapid growth discussed below)

seen in these simulations—which varies little over the entire

ky range—is used to obtain c at xn¼ 0.5. The resulting val-

ues match the high-ky direct results at this gradient setting

very precisely. Also included, in red, is the enhanced growth

rate of the process which henceforth will be referred to as

gradient-enhanced tearing (GET). Growth rates for CT and

GET are extracted by measuring the reconnecting field Bx as

a function of time—since the GDC does not excite Bx,y fluc-

tuations, this does not measure linear GDC growth (which

instead is apparent in U and Bk).
In Fig. 6, the blue curve labeled GDC marks growth of

the linear system in the absence of a current gradient. In

terms of numerical resolutions, the GDC requirements are

similar to those for CT (see Ref. 5), apart from the radial

direction which technically requires only one mode at

kx¼ 0—compare, however, the corresponding comment in

Sec. III.

The effect of rBk on CT growth rates, as discussed ear-

lier, can be seen by comparing the solid black curve (CT at

xn¼ 0) and the dotted black curve (CT at xn¼ 0.5). A mod-

erate enhancement is found to exist throughout the range of

unstable ky.

The picture becomes more complex when looking at the

GET simulation results at xn¼ 0.5, as shown by the dashed

red curves: while following the dotted black curve at high ky,

growth rates much larger than that of the CT are observed at

low ky. As ky! 0, the growth rate of the GDC is attained (in

units of cs/Lref). The deviation from the original CT behavior

becomes even more striking when lowering the driving

By0,max, as seen in the lower plot. Here, the growth rates

especially at low ky take on more and more the nature of the

GDC rather than the CT mode. One consequence is that CT

growth occurs even for ky
 kcs if the GDC is sufficiently

strong (not shown in the figure), despite the fact that this

FIG. 6. Tearing growth rates in as a function of wave number ky of the CT

mode in absence of GDC action (black crosses) for xn¼ 0 (solid line) and

extrapolated to xn¼ 0.5 (dotted line), see the text. The CT in the upper plot

has stronger tearing drive By0,max¼ 3.233 than that in the lower (1.617). The

other data shown (all with xn¼ 0.5) corresponds to GDC growth in U and

Bk (blue diamonds) and the GET effect (red squares), see the text. As a cyan

solid line, a fit curve is shown to illustrate the k2
y dependence of GET. The

effect of changing CT drive relative to xn drive on GET is apparent when

comparing both plots. The normalized diamagnetic drift frequencies are

0.5ky for either case, whereas the inverse Alfv�en times cA evaluate to 1.67

(upper) and 0.84 (lower).
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corresponds to the region of D0 � 0. The relevant mode

structures are shown in Fig. 7, including GET for one such

case (ky¼ 0.22). Note that due to the dominant kx¼ 0, the

GDC structure (not shown) is constant in x. Due to its cou-

pling to the current sheet, GET results in a corresponding

mode structure when CT is subdominant. As soon as the red

GET curve becomes identical with the black CT curve in

Fig. 6, its structure matches exactly that of the CT.

In light of the mode parities in Fig. 7, it is to be stressed

that GET, while not a tearing mode in the strict sense of the

word, is indeed able to reconnect magnetic fields at an ele-

vated rate. This is illustrated in Fig. 8, where reconnection at

the rate of the GDC occurs at ky¼ 0.22> kcs (i.e., D0 < 0), as

a consequence of a large xn.

Destabilization of reconnection by GDC action at lower

ky can be understood from a heuristic calculation. CT simula-

tions—here, in Ref. 5, and equivalently in Ref. 1—are tech-

nically nonlinear but yield linear growth rates and describe

linear physics. This stems from the fact that the current sheet

implementation occurs purely in the perturbed modified dis-

tribution function g(k) through the Vlasov nonlinearityP
k0 ðk0xky � kxk0yÞvðk0Þgðk � k0Þ, with v containing the current

sheet (rather than a perturbation thereof).

Here, the effect on the linear growth rate is of interest. It is

a mode-coupling term in the gyrokinetic response for g(k, x)

that is proportional to gðk � k0;x� x0Þ, nominally making it

phase-incoherent with g(k, x). One may use the renormaliza-

tion procedure of resonance broadening theories22 to calculate

iterative mode-coupling contributions in order to find the piece

that is phase-coherent with g(k, x). To model the effect on the

growth rate, the frequency of the gyrokinetic operator is taken

here to represent the frequency of the linear dispersion rela-

tion—which is not modeled explicitly in the following—and

find the nonlinear decrement from the renormalized

nonlinearity.

The nonlinear gyrokinetic response of the GET effect at

wavenumber k and frequency x can be written as

�ixgðk;xÞ¼
X
k0;x0
ðk0xky� kxk0yÞvðk0;x0Þgðk� k0;x�x0Þ: (6)

GET is observed for the first component in the nonlinearly

interacting triplet of (k, x), ðk0;x0Þ, and ðk � k0;x� x0Þ,
with a complex frequency x to be determined from the

renormalized dispersion relation to be derived here. The sec-

ond triplet component is the current sheet that drives the

CT, which resides in Ak, and therefore in v at k0x ¼ kcs and

k0y ¼ 0. It is stationary (whereby the nonlinearity physically

reduces to a linear term, albeit one with mode coupling),

converting the frequency summation to the operation

x0 ! 0. Lastly, the GDC is the third component in the

triplet, with kx � k0x ¼ 0 (which makes kx¼ kcs) and

ky � k0y ¼ ky > 0. The current sheet and GDC act as the

dominant terms in the k0 summation of the Vlasov nonlinear-

ity, with the generalized potential vðk0Þ reducing to

�vkAkðkcs; 0Þ (ignoring gyroaverages), with vk denoting the

parallel velocity coordinate.

Determining the coherent renormalization of the right-

hand side of Eq. (6) is done by iterating on the mode cou-

pling to find a nonlinear component that is phase-coherent

with g(k). The (technically nonlinear) evolution of gðk
�k0;x� x0Þ ¼ gðk � k0;xÞ is expressed in terms of its lin-

ear GDC drive and its mode coupling as follows:

�iðx�xGDCÞgðk� k0;xÞ
¼
X
k000
ðk000x ðky � k0yÞ � ðkx � k0xÞk000y Þvðk000Þgðk� k0 � k000;xÞ;

(7)

where the appearance of the complex GDC frequency leads

to a linear response x¼xGDC for v¼ 0, consistent with

GDC wavenumber k � k0. The wavenumber k000 ¼ �k0 selects

the coherent renormalized response. Solving this expression

for gðk � k0;xÞ and substituting it into Eq. (6) yields

�ixg k;xð Þ ¼ �

X
k0
ðk0xky � kxk0yÞ

2jv k0ð Þj2

�i x� xGDCð Þ
g k;xð Þ; (8)

FIG. 7. Radial mode structures Re(Ak), in arbitrary units, for CT (solid lines:

red for ky¼ 0.02, blue for ky¼ 0.16), for the driving current sheet (black dot-

ted line), and for GET (pink dashed line, ky¼ 0.22). Here, a particularly

small By0,max was chosen to obtain GET growth at negative D0.

FIG. 8. Contours of the magnetic potential Ak for two narrowly spaced

moments in time: earlier contours are black dashed lines, later ones red solid

lines. Only a subsection of the simulation box is shown, focusing on the X

point, where reconnection is clearly visible. The data stems from a GET sim-

ulation at negative D0 with a large xn relative to the tearing mode drive.
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where the right-hand side is a standard propagator renormali-

zation or resonance broadening decrement (see, e.g., Ref.

23). The solution of the resulting dispersion relation is

x ¼ 1

2
xGDC6 x2

GDC þ 4
X

k0
ðk0xky � kxk0yÞ

2jv k0ð Þj2
� �1=2

" #

�xGET; ð9Þ

whose dominant branch reduces to xGET¼xGDC for a negli-

gible current sheet in v.

Assuming a weak but non-zero current sheet, the first

and (at least at low ky) dominant root of the dispersion rela-

tion becomes

xGET ¼ xGDC 1þ 1

x2
GDC

X
k0
ðk0xky � kxk0yÞ

2jv k0ð Þj2
 !

; (10)

which, for xGDC¼ icGDC, results in overall growth that expe-

riences a stabilizing force at finite ky that is proportional to

k2
y B2

y0;max, which is precisely what was shown to be the case

in Fig. 6.

More specifically, quadratic fits to the data at low ky are

shown for both plots. One may compare these fits quantita-

tively with the predicted values from Eq. (10), using for this

simple argument the thermal velocity (i.e., vk	 1 in normal-

ized units) in the definition of v, as well as kcsAk	By0,max.

For the first case, By0,max¼ 3.233, one thus obtains a stabili-

zation Dc about 25% weaker than the fit curve. Repeating

this procedure for the second case, By0,max¼ 1.617, very sim-

ilarly yields a Dc about 25% lower than the corresponding fit

curve. Therefore, despite the heuristic nature of the calcula-

tion, it is able to capture the dependencies on ky and By0,max

correctly, as well as provide a fairly good quantitative esti-

mate for the stabilization.

Having established the physical process behind GET,

the focus is now shifted to the regulation of growth rates

through the driving gradients. CT growth scales with cA /
By0,max, whereas in units of cs/Lref, the value of cGDC depends

only on xn (if xTj¼ 0) and yields results independent of

By0,max (for sufficiently high xn). Note that Lref enters both

into the normalization of the reconnecting field via

By0;max ! By0;maxB0qs=Lref and the GDC growth rate meas-

ured in units of cs/Lref. Consequently, Lref can be seen as a

measure of the scale separation between reconnecting and

background field, while simultaneously determining the

value of xn for a given Ln.

Consider a hydrogen plasma in a uniform magnetic field

B0 which is subjected to a (perpendicular) density gradient

xn¼ 1, equivalent to normalizing macroscopic scales to the

gradient scale length. For simplicity, assume b¼ 2 and

n0¼Ti0¼Te0¼ 1. Now a current is introduced in the parallel

direction which produces a sinusoidal field By at kx¼ 1

which is constant in y. This scenario is susceptible to a CT

mode with a growth rate maximum of cCT	 0.03cA; at the

same time, it provides the ingredients for GDC/GET, this

time with a growth rate on the order of cGET	 cs/Ln

(¼ kyx*e, even though the results are insensitive to the pre-

cise value of ky ! 0). Translating this value into Alfv�enic

units yields cGET	 cA/By0,max, making the relative CT-GET

impact

cCT

cGET

	 0:03By0;max; (11)

where the usual normalization for By0,max evaluates to units

of B0qs/Ln. By choosing a value for the free parameter

By0,max, one can pick the dominant instability; in the process

possibly creating a GET growth rate cGET� cGDC � cCT,

along with cGET � cA. Alternatively, one may view By0,max

as fixed and vary xn, with the same relative results. By dint

of these relations, GET may therefore take the role of ultra-
fast reconnection—as opposed to the CT mode which is

sometimes referred to as fast reconnection.

C. Impact on turbulence

Nonlinear particle acceleration through parallel electric

fields may provide large energies even when By0,max and B0

are significantly separated. This situation is investigated in

Ref. 24, where the focus lies on reconnection turbulence

driven by a term in the Vlasov equation

@g

@t
¼ � � � � xdr gky¼0 tð Þ � gky¼0 t ¼ 0ð Þ

� �
; (12)

where xdr is a driving frequency; dissipation is provided by

a collision operator. Note that this form of the nonlinear

drive constitutes an improved version of that presented in

Ref. 5. Before applying GET to a fully nonlinear scenario, it

should be noted that the turbulent parallel electric field Ek—
as well as the heating rate jkEk (with the parallel current

jk)—scales to a significant degree in accordance with expect-

ations based on the linear growth rates. While Ref. 24

focuses on a case without background gradients, for the pres-

ent work simulations were performed at xn ranging from 0.1

to 1. Even when linear growth rate enhancements were small

(i.e., c � c(xn¼ 0)), parallel electric fields and heating rates

were significantly increased. As was discussed in Sec. III,

box size settings—which, in numerically converged regions,

have no impact on volumetric heating rates in the absence of

xn—severely affect jkEk even at xn¼ 0.1.

A brief comment on the heating rate and the parallel

electric field: consistent with gyrokinetic literature, the mon-

iker parallel is used for a number of quantities that are paral-

lel to the background magnetic field—vk, Ak, Bk, jk—and

could equivalently be labeled with the subscript z. Magnetic

field perturbations will lead to a slight misalignment of field

lines relative to the background field, but it can be shown

through ordering relations that the aforementioned quantities

are hardly affected; e.g., vk¼ vzþ d, where d! 0 in gyroki-

netic ordering. This, however, is not the case for Ek, where

this misalignment has to be taken into account, see Ref. 24.

For the latter case, with the default box sizes from Ref.

24 of 62.8qs� 62.8qs, contours of the turbulence are shown

in Fig. 9. The tendency of turbulent structures to cover the

whole simulation box is apparent not only in U (where the

GDC exerts direct influence) but also in Ak, where GET

imprints CT with GDC features. In particular, Bk (not shown

062105-7 Pueschel et al. Phys. Plasmas 22, 062105 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.104.165.60 On: Wed, 03 Jun 2015 16:10:07



in the figure) and U—whose field equation is coupled to that

of Bk—see marked increases in amplitude relative to the

case with xn¼ 0, with strong heat and particle transport

along x. Interpreting the results of such a simulation in the

context of physical heating therefore becomes a difficult

undertaking. The addition of GDC-stabilizing properties to

the physical setup, such as background magnetic shear or

curvature, may alleviate these issues; due to the associated

complexity, such studies will have to be deferred to future

work.

While more research into the physical and numerical

properties of this mixed reconnection and drift-wave turbu-

lence will be necessary to understand all relevant mecha-

nisms, these first results indicate that GDC and GET do not

merely affect linear growth rates but can also be expected to

enhance heating in turbulent scenarios. Given the difficulties

and open questions that stem from nonlinear simulations,

however, in the following the focus is returned to linear

enhancement of reconnection rates and their possible role in

coronal settings.

V. APPLICATION TO THE SOLAR CORONA

To gauge whether the GET process may contribute to

energetic particle production in the solar corona—generally

considered to be a region where magnetic reconnection is an

important source of non-thermal particles—the critical (den-

sity or temperature) gradient shall now be calculated at

which GET (taken here to be driven by a GDC mode) over-

takes standard CT as the dominant process.

As per Refs. 25 and 26, typical parameters for the solar

corona are n	 109 cm�3 for the density, B0	 100 G for the

magnetic field, and L	 109 cm for the parallel extent of the

domain and choice of Lref; with a temperature T¼ 106 K

which shall be applied here to both ions and electrons.

From these quantities, one arrives at b¼ 0.00035,

cs¼ 9.1� 106 cm/s, and qs¼ 9.5 cm. These values are identi-

cal with the default settings used in the corona section of

Ref. 24.

Furthermore, using the respective domain size and mag-

netic field from Ref. 25, one has a driving kx¼ 0.0004 and

field By0,max¼ 7.5� 106 in the usual normalized units (corre-

sponding to By0 ¼ 2�1=2By0;max ¼ 5 G). Simulating at lower

By0,max and using the standard cA scaling, one can extract the

CT growth rate; the corresponding simulations were per-

formed with Nx¼ 16384 grid points in x. In addition, one can

directly obtain cGDC(xn)� cGET(xn) (with similar results

expected for xTj which are set to zero here) for these

parameters.

In units of cs/Lref, the growth rates thus read: cCT	 1.3

and cGET¼ 0.026xn; or, equivalently, cCT/cA	 5.7� 10�6

and cGET/x*e¼ 65 (assuming ky¼ kcs in the definition of the

diamagnetic drift frequency). Based on these values, the crit-

ical gradient length scale where cCT¼ cGET becomes

Lcrit
p ¼ 0:02Lref ¼ 2� 107 cm; (13)

where Lp¼ Ln or Lp¼LT. Clearly, this value scales with

By0,max: smaller values will result in an earlier onset of

GET—an alternative interpretation is that for a given

xn,T, there exists a minimal By0,max below which GET

will dominate. If gradients occur on smaller scale lengths

than Lcrit
p , and presuming that three-dimensional CT is

not drastically faster than its two-dimensional counter-

part, one can expect GET to play a role in reconnecting

fields. It should be stressed that Lp � Lcrit
p may be neces-

sary for GET to be straightforward to distinguish from

CT observationally.

While large-scale density or temperature fluctuations in

the corona are on the order of Lp	 108 cm, filamentation can

create significantly smaller-scale fluctuations27 with poten-

tially higher xn,T. In particular, the above Lcrit
p should consti-

tute a realistic scenario for corona physics, making GET

activity an interesting candidate for processes behind coronal

heating. Moreover, the filament-like structures in the turbu-

lence described in Ref. 24 are creating small-scale, self-

consistent gradients in n and T, while mergers of circular

structures are found to create heating bursts consistent with

nanoflares.28 Therefore, one may assume that nanoflare

activity can be affected by the GET effect.

FIG. 9. Turbulent contours, from top to bottom, of the electrostatic potential

U, the magnetic potential Ak, and the parallel electron flow velocity uk
(which serves as a good proxy for jk), for a simulation at finite xn¼ 0.1. The

snapshot shown here is characteristic of the quasi-stationary turbulent state.
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VI. SUMMARY

Gradients in the background density and their impact on

tearing mode growth rates have been studied, in conjunction

with the investigation of a new drift-wave instability referred

to as GDC mode.

The standard picture of reconnection stabilized by dia-

magnetic flows in response to such gradients is confirmed

quantitatively in the applicable limits. However, when con-

sidering higher b values and including Bk effects, the rBk
drift is found to counteract the E�B drift, under the right

circumstances leading to net destabilization of the CT mode.

For all cases studied here, however, destabilization has been

moderate, with at most a few 10% increase in growth rates.

With both Bk and density or temperature gradients xn,T,

a drift-wave-type mode becomes unstable which couples the

rBk and E�B drifts. More specifically, a fluctuation in the

electrostatic potential U reinforces, via its associated E�B
drift and the background gradient xn,T, the fluctuation in Bk.
The latter, in turn, reinforces U via the rBk drift. Therefore,

the name gradient-driven drift-coupling instability is intro-

duced for this mode. In unsheared slab geometry, it has no

critical gradient and is independent of the mode number ky at

sufficiently low ky.

When both CT and GDC activity are present in a sys-

tem, the latter may couple to the current sheet driving the

former, leading to reconnection being observed on time

scales associated with GDC growth. As the GDC is regulated

by xn,T—as opposed to the reconnecting field strength

By0,max, which governs CT growth—there now exists a

means of inducing reconnecting field growth, in principle, at

a rate much faster than the inverse Alfv�en time; or, alterna-

tively, at a velocity much faster than the Alfv�en speed. For

this process, dubbed gradient-enhanced tearing, or GET, to

be dominant over standard CT growth in the solar corona, a

sufficiently large xn,T is required. Using typical parameters,

the corresponding critical gradient scale length is shown to

be Lcrit
p ¼ 2� 107 cm, below which the GDC and thus GET

grow more quickly than CT—a value that is consistent with

expectations for the solar corona.

In terms of turbulence, the impact of GET is significant:

heating rates are found to be strongly enhanced even at moder-

ate xn. However, the increases in jkEk—and turbulent ampli-

tudes in general—are not and cannot be made to be converged

in the perpendicular box sizes, as turbulent structures are gravi-

tating towards the lowest wave numbers in the system. As

even lower wave numbers are included by increasing box

sizes, the turbulence therefore changes quantitatively, leading

to stronger heating among other consequences. To obtain prop-

erly converged answers regarding the impact of pressure gra-

dients on reconnection turbulence, one must therefore either

take the full system size into account—with some consequen-

ces for the boundary conditions—or introduce more realistic

modeling of stabilizing effects such as background magnetic

shear. Such efforts shall be the subject of future investigation.
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APPENDIX A: DERIVATION

Following Ref. 5 and the simplifications delineated in

Sec. II, the normalized gyrokinetic Vlasov equation (note

that @t ! ix instead of �ix is used to match Gene’s fre-

quency sign convention) reads

ixgj¼�xnF0ikyv¼�xnF0iky J0 kj

� �
UþTj0l

qj

2J1 kj

� �
kj

Bk

 !
;

(A1)

with kj�k?ð2Tj0mjl=ðB0q2
j ÞÞ

1=2
and v¼J0ðkjÞUþ½ðTj0lÞ=qj

½ð2J1ðkjÞÞ=kjBk in the absence of Ak-type fluctuations.

Defining -��xnky=x, one thus obtains

gj ¼ -F0 J0 kj

� �
Uþ Tj0l

qj

2J1 kj

� �
kj

Bk

 !
: (A2)

Additionally, the background distribution can be written as

F0 � p�3=2e
�v2
k�lB0 . Next, the field equations (setting the

Debye length kD¼ 0) can be written as

U ¼ C3M00 � C2M01

C1C3 � C2
2

; (A3)

Bk ¼
C1M01 � C2M00

C1C3 � C2
2

; (A4)

M00 ¼
X

j

qjnj0pB0

ð
J0gjdvkdl; (A5)

M01 ¼
X

j

qjnj0pB
3=2
0

vTj

k?

ð
l1=2J1gjdvkdl; (A6)

C1 ¼ k2
?k

2
D þ

X
j

q2
j nj0

Tj0
1� C0ð Þ; (A7)

C2 ¼ �
X

j

qjnj0

B0

C0 � C1ð Þ; (A8)

C3 ¼ �
2

b
�
X

j

2nj0Tj0

B2
0

C0 � C1ð Þ; (A9)

where Ck � IkðbjÞe�bj and bj � k2
?Tj0mj=ðq2

j B2
0Þ. One may

define

D � ðC1C3 � C2
2Þ
�1: (A10)

Next, gj will be inserted into M0x, which in turn goes into

the fields.

First, these are the relevant integrals, with g
ffiffiffi
l
p � kjð1

�1

e
�v2
kdvk ¼ p1=2; (A11)
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ð1
0

J0 g
ffiffiffi
l
p� �2

e�lB0 dl ¼ 1

B0

e�g2= 2B0ð ÞI0

g2

2B0

� �
� C0

B0

; (A12)

ð1
0

J0 g
ffiffiffi
l
p� �

J1 g
ffiffiffi
l
p� �

l1=2e�lB0 dl ¼ g

2B2
0

C0 � C1ð Þ; (A13)

ð1
0

J1 g
ffiffiffi
l
p� �2

le�lB0 dl ¼ g2

2B3
0

C0 � C1ð Þ: (A14)

Thus,

M00 ¼
X

j

qjnj0- C0Uþ
2Tj0

qj

1

2B0

C0 � C1ð ÞBk
� �

; (A15)

M01 ¼
X

j

qjnj0B
1=2
0

vTj

k?
-

g
2B0

C0 � C1ð ÞU
�

þ 2Tj0

qj

g
2B2

0

C0 � C1ð ÞBk
�
: (A16)

These reduce to

M00 ¼ U-
X

j

qjnj0C0 þ Bk-
X

j

nj0Tj0

B0

C0 � C1ð Þ; (A17)

M01 ¼ U-
X

j

nj0Tj0

B0

C0 � C1ð Þ

þ Bk-
X

j

2nj0T2
j0

qjB2
0

C0 � C1ð Þ; (A18)

or, implicitly defining the quantities A,

M00 ¼ U-A1 þ Bk-A2; (A19)

M01 ¼ U-A2 þ Bk-A3: (A20)

Note that for singly charged ions, A1;A3 ! 0 in the zeroth-

order driftkinetic limit due to quasineutrality.

With these definitions, the field equations become

U ¼ -DC3ðUA1 þ BkA2Þ � -DC2ðUA2 þ BkA3Þ; (A21)

Bk ¼ -DC1ðUA2 þ BkA3Þ � -DC2ðUA1 þ BkA2Þ: (A22)

Therefore,

Bk ¼
U C1A2 � C2A1ð Þ

-Dð Þ�1 � C1A3 þ C2A2

; (A23)

allowing for the elimination of U, which in turn yields (with

all real C and A)

-Dð Þ�1 ¼C3A1 þ
C3A2 C1A2 � C2A1ð Þ

-Dð Þ�1 � C1A3 þ C2A2

�C2A2 �
C2A3 C1A2 � C2A1ð Þ

-Dð Þ�1 � C1A3 þ C2A2

; (A24)

or, alternatively,

ð-DÞ2ð�C3C1A1A3 þ C3C2A1A2 þ C3C1A2
2 � C3C2A2A1

þC2C1A2A3 � C2
2A

2
2 � C2C1A3A2 þ C2

2A3A1Þ
þ-DðC1A3 � 2C2A2 þ C3A1Þ � 1 ¼ 0: (A25)

The condition for instability (i.e., for Im(-) 6¼ 0) therefore

becomes

�4ð�C3C1A1A3 þ C3C2A1A2 þ C3C1A2
2 � C3C2A2A1

þC2C1A2A3 � C2
2A

2
2 � C2C1A3A2 þ C2

2A3A1Þ
>ðC1A3 � 2C2A2 þ C3A1Þ2 : (A26)

From evaluation at typical parameters (here, xn¼B0

¼Te0/Ti0¼ 1 and ky¼ b¼ 0.01, hydrogen mass ratio), one

can compare the constituting quantities:

C1 � 1:0� 10�4 C2 � 1:5� 10�4

C3 � �204:0 D � �49:0;
(A27)

meaning �2=b � C3 � C1 	 C2. Similarly,

A1 � �1:0� 10�4 A2 � 2:0 A3 � �3:0� 10�4: (A28)

Thus, the magnitude of the relevant terms can be estimated:

C3C1A1A3 	 10�9 C3C2A1A2 	 10�5 C3C1A2
2 	 10�1

C3C2A2A1 	 10�5 C2C1A2A3 	 10�11 C2
2A

2
2 	 10�7

C2C1A3A2 	 10�11 C2
2A3A1 	 10�15

C1A3 	 10�8 C2A2 	 10�4 C3A1 	 10�2: (A29)

Clearly, the third term dominates the condition for insta-

bility in magnitude. As it has negative sign, the condition

is fulfilled. Examining the second-to-last term in

Eq. (A26) in relation to the third, one can also see that

Im(-) � Re(-). With this ordering, the equation for -
reduces to

ð-DÞ2C3C1A2
2 þ -DC3A1 � 1 ¼ 0: (A30)

The solution is therefore

- ¼
�C3A162 C3C1A2

2

� �1=2

2DC3C1A2
2

¼ �2:55� 10�360:0714i;

(A31)

for the parameter choice mentioned above, which translates to

c;x ¼ 0:1399; 0:004996: (A32)

By comparison, solving the full gyrokinetic dispersion rela-

tion in Maple yields a very similar

c;x ¼ 0:1399; 0:004848; (A33)

which, in turn, is nearly identical with the gyrokinetic simu-

lation results from Gene simulations,

c;x ¼ 0:1398; 0:004844; (A34)

and runs performed with AstroGK,
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c;x ¼ 0:1397; 0:004851: (A35)

Note that the latter are shown here in Gene normalization.

To obtain parametric dependencies as applicable near

the above point in parameters space, one may write the com-

plex frequency components as

c � xnky

Im -ð Þ
x ¼ �xnkyRe -ð Þ

Im -ð Þ2
; (A36)

and thus

c ¼ xnkyjDjð�C3C1A2
2Þ

1=2; (A37)

x ¼ � 1

2
xnkyDC3A1; (A38)

based on Eq. (A31). Writing out the constituting terms gives

the following expressions:

c¼xnky
2

b
þ
X

j

2nj0Tj0

B2
0

C0�C1ð Þ
 !1=2 X

j

nj0Tj0

B0

C0�C1ð Þ
 !

�
X

j

q2
j nj0

Tj0
1�C0ð Þ

 !1=2	 X
j

q2
j nj0

Tj0
1�C0ð Þ

 !"

� 2

b
þ
X

j

2nj0Tj0

B2
0

C0�C1ð Þ
 !

þ
X

j

qjnj0

B0

C0�C1ð Þ
 !2

3
5;

(A39)

x ¼� xnky

2
� 2

b
�
X

j

2nj0Tj0

B2
0

C0 � C1ð Þ
 !

�
X

j

qjnj0C0

� �	 X
j

q2
j nj0

Tj0
1� C0ð Þ

 !"

� � 2

b
�
X

j

2nj0Tj0

B2
0

C0 � C1ð Þ
 !

�
X

j

qjnj0

B0

C0 � C1ð Þ
 !2

3
5; (A40)

which, by comparing the different C and using C3 ¼ �2=b
(in the low-b limit), can be simplified to

c ¼xnky
2

b

� ��1=2 X
j

nj0Tj0

B0

C0 � C1ð Þ
 !

�
X

j

q2
j nj0

Tj0
1� C0ð Þ

 !�1=2

; (A41)

x ¼ �xnky

2

X
j

qjnj0C0

� � X
j

q2
j nj0

Tj0
1� C0ð Þ

 !�1

: (A42)

In the low-ky, driftkinetic limit, one can write (with

bj ¼ k2
y Tj0mj=ðq2

j B2
0Þ)

C0 � 1� bj 1� C0 � bj C0 � C1 � 1� 3

2
bj � 1;

(A43)

where the linear contribution has to be retained in the first

expression because of the zero-order term canceling due to

quasineutrality, see below; whereas in the last expression the

linear contribution—which is quadratic in ky—is dominated

by the zero-order term. Therefore,

c ¼ xnky
2

b

� ��1=2 X
j

nj0Tj0

B0

 ! X
j

k2
y

nj0mj

B2
0

 !�1=2

; (A44)

x ¼ �xnky

2

X
j

qjnj0 1� k2
y

Tj0mj

q2
j B2

0

 ! ! X
j

k2
y

nj0mj

B2
0

 !�1

:

(A45)

Since
P

j qjnj0 ¼ 0 due to quasineutrality, one can write

c ¼ xn
2

b

� ��1=2 X
j

nj0Tj0

� � X
j

nj0mj

� ��1=2
; (A46)

x ¼ xnky

2

X
j

nj0Tj0mj

qj

 ! X
j

nj0mj

� ��1
: (A47)

These expressions are valid to first order in ky. With a hydro-

gen plasma (qi¼�qe and me � mi) and assuming Ti0/Te0

� me/mi, this becomes

c¼xn
bni0

2mi

� �1=2

Te0þTi0ð Þ �!insert

m;n;T
xn

ffiffiffiffiffiffi
2b

p
¼ 0:14; (A48)

x ¼ xnky

2

Ti0

qi

�!insert

m;n;T

xnky

2
¼ 0:005; (A49)

in good agreement with the aforementioned results.

In summary,

c / xnk0
yb

1=2 x / xnkyb
0: (A50)

Note that both analytical and simulation approaches using

zeroth-order (in ky) approximations for J0 and J1 yield differ-

ent results for the frequencies.
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